Extracellular superoxide dismutase, nitric oxide, and central nervous system O2 toxicity.

نویسندگان

  • T D Oury
  • Y S Ho
  • C A Piantadosi
  • J D Crapo
چکیده

Although reactive O2 species appear to participate in central nervous system (CNS) O2 toxicity, the exact roles of different reactive O2 species are undetermined. To study the contribution of extracellular superoxide anion (O2-) to CNS O2 toxicity we constructed transgenic mice overexpressing human extracellular superoxide dismutase (ECSOD; superoxide:superoxide oxidoreductase, EC 1.15.1.1) in the brain. Remarkably, when exposed to 6 atm (1 atm = 101.3 kPA) of hyperbaric oxygen for 25 min, transgenic mice demonstrated higher mortality (83%) than nontransgenic litter-mates (33%; P < 0.017). Pretreatment with diethyldithiocarbamate, which inhibits both ECSOD and Cu/Zn superoxide dismutase (Cu/Zn SOD) activity, increased resistance to CNS O2 toxicity, in terms of both survival (100% in transgenics and 93% in nontransgenics) and resistance to seizures (4-fold increase in seizure latency in both transgenic and nontransgenic mice; P < 0.05). Thus, O2- apparently protects against CNS O2 toxicity. We hypothesized that O2- decreased toxicity by inactivating nitric oxide (NO.). To test this, we inhibited NO. synthase (EC 1.14.23) with N omega-nitro-L-arginine to determine whether NO. contributes to enhanced CNS O2 toxicity in transgenic mice. N omega-nitro-L-arginine protected both transgenic and nontransgenic mice against CNS O2 toxicity (100% survival and a 4-fold delay in time to first seizure; P < 0.05), as well as abolishing the difference in sensitivity to CNS O2 toxicity between transgenic and nontransgenic mice. These results implicate NO. as an important mediator in CNS O2 toxicity and suggest that ECSOD increases CNS O2 toxicity by inhibiting O2(-)-mediated inactivation of NO.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contributions of nitric oxide synthase isoforms to pulmonary oxygen toxicity, local vs. mediated effects.

Reactive species of oxygen and nitrogen have been collectively implicated in pulmonary oxygen toxicity, but the contributions of specific molecules are unknown. Therefore, we assessed the roles of several reactive species, particularly nitric oxide, in pulmonary injury by exposing wild-type mice and seven groups of genetically altered mice to >98% O2 at 1, 3, or 4 atmospheres absolute. Genetica...

متن کامل

Effects of heme proteins on nitric oxide levels and cell viability in isolated PMNs: a mechanism of toxicity.

Isolated human PMNs served as a model to determine oxyhemoglobin (oxyHb) binding and the effects of oxymyoglobin (oxyMb) or oxyHb on production of both nitric oxide (NO*) and superoxide (O2*-) and the resulting cytotoxicity. Physiologically relevant concentrations of NO* and H2O2 oxidized, to a similar extent, 2,7-dichlorodihydrofluorescein (DCFH) loaded into polymorphonuclear neutrophils (PMNs...

متن کامل

Ouabain treatment increases nitric oxide bioavailability and decreases superoxide anion production in cerebral vessels.

OBJECTIVE Chronic administration of ouabain induces hypertension and increases the contribution of nitric oxide to vasoconstrictor responses in peripheral arteries. The aim of this study was to analyse whether ouabain treatment alters the nitric oxide bioavailability in cerebral arteries. METHODS Basilar arteries from control and ouabain-treated rats ( approximately 8.0 microg/day, 5 weeks) w...

متن کامل

Nitric oxide- and superoxide-mediated toxicity in cerebral endothelial cells.

Nitric oxide and superoxide are free radicals that appear to contribute to the pathogenesis of a number of brain disorders, and cerebral endothelial cells are a potential target of these agents. Because of the capacity for these two agents to combine, it has been suggested that nitric oxide might either enhance or inhibit the toxic effects of superoxide. To establish the effect of the generatio...

متن کامل

Tetrahydrobiopterin alters superoxide and nitric oxide release in prehypertensive rats.

Constitutive nitric oxide synthase (cNOS) with insufficient cofactor (6R)-5,6,7,8-tetrahydrobiopterin (H4B) may generate damaging superoxide (O2-). This study was designed to determine whether cNOS-dependent generation of O2- occurs in spontaneously hypertensive rats (SHR) before the onset of hypertension. Aortas from 4-wk-old SHR and Wistar-Kyoto rats were used. cNOS was stimulated by calcium ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 89 20  شماره 

صفحات  -

تاریخ انتشار 1992